Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338649

RESUMO

The highly aggressive and invasive glioblastoma (GBM) tumour is the most malignant lesion among adult-type diffuse gliomas, representing the most common primary brain tumour in the neuro-oncology practice of adults. With a poor overall prognosis and strong resistance to treatment, this nervous system tumour requires new innovative treatment. GBM is a polymorphic tumour consisting of an array of stromal cells and various malignant cells contributing to tumour initiation, progression, and treatment response. Cannabinoids possess anti-cancer potencies against glioma cell lines and in animal models. To improve existing treatment, cannabinoids as functionalised ligands on nanocarriers were investigated as potential anti-cancer agents. The GBM tumour microenvironment is a multifaceted system consisting of resident or recruited immune cells, extracellular matrix components, tissue-resident cells, and soluble factors. The immune microenvironment accounts for a substantial volume of GBM tumours. The barriers to the treatment of glioblastoma with cannabinoids, such as crossing the blood-brain barrier and psychoactive and off-target side effects, can be alleviated with the use of nanocarrier drug delivery systems and functionalised ligands for improved specificity and targeting of pharmacological receptors and anti-cancer signalling pathways. This review has shown the presence of endocannabinoid receptors in the tumour microenvironment, which can be used as a potential unique target for specific drug delivery. Existing cannabinoid agents, studied previously, show anti-cancer potencies via signalling pathways associated with the hallmarks of cancer. The results of the review can be used to provide guidance in the design of future drug therapy for glioblastoma tumours.


Assuntos
Neoplasias Encefálicas , Canabinoides , Glioblastoma , Glioma , Animais , Glioblastoma/metabolismo , Endocanabinoides , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral , Canabinoides/farmacologia , Canabinoides/uso terapêutico
2.
Pharmaceutics ; 15(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37514041

RESUMO

Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification and ultrasonication were used to manufacture MTZ-loaded SLN, which were subsequently coated with chitosan (CS) by mechanical stirring using a 0.1% w/v solution. Gelucire® 48/16 and Transcutol® HP were used as the solid lipid and synthetic solvent, respectively, with Tween® 20 included as a stabilizing agent. The critical quality attributes (CQA) of the optimized CS-coated SLN that was monitored included particle size, polydispersity index, Zeta potential, % entrapment efficiency, % MTZ loading, pH, and osmolarity. The optimized coated nanocarriers were evaluated using laser Doppler anemometry (LDA) and were determined to be stable, with particle sizes in the nanometre range. In vitro mucoadhesion, MTZ release and short-term stability, in addition to the determination of the shape of the optimized CS-coated SLN, were undertaken. The mucoadhesive properties of the optimized CS-coated MTZ-loaded SLN demonstrated increased ocular availability, which may allow dose reduction or longer intervals between doses by improving precorneal retention and ocular availability. Overall, our findings suggest that CS-coated MTZ-loaded SLNs have the potential for clinical application, to enhance ocular delivery through the release of MTZ.

3.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36362014

RESUMO

Opportunities for developing innovative and intelligent drug delivery technologies by targeting the endocannabinoid system are becoming more apparent. This review provides an overview of strategies to develop targeted drug delivery using the endocannabinoid system (ECS). Recent advances in endocannabinoid system targeting showcase enhanced pharmaceutical therapy specificity while minimizing undesirable side effects and overcoming formulation challenges associated with cannabinoids. This review identifies advances in targeted drug delivery technologies that may permit access to the full pharmacotherapeutic potential of the ECS. The design of optimized nanocarriers that target specific tissues can be improved by understanding the nature of the signaling pathways, distribution in the mammalian body, receptor structure, and enzymatic degradation of the ECS. A closer look at ligand-receptor complexes, endocannabinoid tone, tissue distribution, and G-protein activity leads to a better understanding of the potential of the ECS toolkit for therapeutics. The signal transduction pathways examine the modulation of downstream effector proteins, desensitization, signaling cascades, and biased signaling. An in-depth and overall view of the targeted system is achieved through homology modeling where mutagenesis and ligand binding examine the binding site and allow sequence analysis and the formation of libraries for molecular docking and molecular dynamic simulations. Internalization routes exploring receptor-mediated endocytosis and lipid rafts are also considered for explicit signaling. Furthermore, the review highlights nanotechnology and surface modification aspects as a possible future approach for specific targeting.


Assuntos
Canabinoides , Endocanabinoides , Animais , Endocanabinoides/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Canabinoides/farmacologia , Transdução de Sinais , Mamíferos/metabolismo
4.
Pharmaceutics ; 14(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35890214

RESUMO

Despite their incredible contribution to fighting viral infections, antiviral viral resistance is an increasing concern and often arises due to unfavorable physicochemical and biopharmaceutical properties. To address this kind of issue, lipid nanocapsules (LNC) are developed in this study, using efavirenz (EFV) as a drug model. EFV solubility was assessed in water, Labrafac Lipophile and medium chain triglycerides oil (MCT oil). EFV turned out to be more soluble in the two latter dissolving media (solubility > 250 mg/mL); hence, given its affordability, MCT oil was used for LNC formulation. LNC were prepared using a low-energy method named phase inversion, and following a design of experiments process. This one resulted in polynomial models that predicted LNC particle size, polydispersity index and zeta potential that were, respectively, around 50 nm, below 0.2 and below −33 mV, for the optimized formulations. Once synthesized, we were able to achieve an encapsulation efficacy of 87%. On the other hand, high EFV release from the LNC carrier was obtained in neutral medium as compared to acid milieu (pH 4) with, respectively, 42 and 27% EFV release within 74 h. Other characterization techniques were applied and further supported the successful encapsulation of EFV in LNCs in an amorphous form. Stability studies revealed that the developed LNC were quite stable over the period of 28 days. Ultimately, LNCs have been demonstrated to improve the biopharmaceutical properties of EFV and could therefore be used to fight against antiviral resistance.

5.
J Sep Sci ; 45(16): 3187-3196, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35762108

RESUMO

This study is focused on proposing a new design and setup for electromembrane extraction. A new cap was designed and conductive vials of different shapes were fabricated using three-dimensional printing. The new cap holds three fibers to enhance electromembrane extraction recovery. Conductive vials can simultaneously perform as electrodes therefore, there is no need to include an electrode in sample solutions. Phenobarbital and phenytoin were used as model compounds to assess the setup performance. Under optimal conditions, these analytes were extracted from the sample solution at pH = 9 to the acceptor solution at pH = 13 with a voltage of 40 V for 20 min, while 1-octanol was employed as the supported-liquid-membrane. The influence of conductive vials geometry on the recovery was examined and the effects of different shapes were studied by performing numerical simulation to establish electric potential distribution. Of the vials tested with circular, triangular, and floral-like cross-sections the latter exhibited the best voltage distribution. The circular vial had the highest recovery attributed to its better hydrodynamic shape, which allows rapid fluid sample transport and therefore enhanced system recovery. The extraction recovery and relative standard deviation of the circular vial with three fibers were 33.0 and 7.6 for phenobarbital and 42.2 and 10.4 for phenytoin.


Assuntos
Fenobarbital , Fenitoína , Cromatografia Líquida de Alta Pressão , Condutividade Elétrica , Técnicas Eletroquímicas , Eletrodos , Membranas Artificiais , Impressão Tridimensional
7.
Pharmaceutics ; 13(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205990

RESUMO

Colorectal cancer is the third most diagnosed cancer and the second leading cause of death. The use of 5-fluorouracil (5-FU) has been the major chemotherapeutic treatment for colorectal cancer patients. However, the efficacy of 5-FU is limited by drug resistance, and bone marrow toxicity through high-level expression of thymidylate synthase, justifying the need for improvement of the therapeutic index. In this study, the effects of ultrasound on echogenic 5-FU encapsulated crude soy liposomes were investigated for their potential to address these challenges. Liposomes were prepared by thin-film hydration using crude soy lecithin and cholesterol. Argon gas was entrapped in the liposomes for sonosensitivity (that is, responsiveness to ultrasound). The nanoparticles were characterized for particle size and morphology. The physicochemical properties were also evaluated using differential scanning calorimetry, Fourier transform infrared and X-ray diffraction. The release profile of 5-FU was assessed with and without 20 kHz low-frequency ultrasound waves at various amplitudes and exposure times. The result reveal that 5-FU-loaded liposomes were spherical with an encapsulation efficiency of approximately 60%. Approximately 65% of 5-FU was released at the highest amplitude and exposure time was investigated. The results are encouraging for the stimulated and controlled release of 5-FU for the management of colorectal cancer.

8.
Molecules ; 26(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299519

RESUMO

There is a dearth of natural remedies available for the treatment of an increasing number of diseases facing mankind. Natural products may provide an opportunity to produce formulations and therapeutic solutions to address this shortage. Curcumin (CUR), diferuloylmethane; I,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione is the major pigment in turmeric powder which has been reported to exhibit a number of health benefits including, antibacterial, antiviral, anti-cancer, anti-inflammatory and anti-oxidant properties. In this review, the authors attempt to highlight the biological and pharmacological properties of CUR in addition to emphasizing aspects relating to the biosynthesis, encapsulation and therapeutic effects of the compound. The information contained in this review was generated by considering published information in which evidence of enhanced biological and pharmacological properties of nano-encapsulated CUR was reported. CUR has contributed to a significant improvement in melanoma, breast, lung, gastro-intestinal, and genito-urinary cancer therapy. We highlight the impact of nano-encapsulated CUR for efficient inhibition of cell proliferation, even at low concentrations compared to the free CUR when considering anti-proliferation. Furthermore nano-encapsulated CUR exhibited bioactive properties, exerted cytotoxic and anti-oxidant effects by acting on endogenous and cholinergic anti-oxidant systems. CUR was reported to block Hepatitis C virus (HCV) entry into hepatic cells, inhibit MRSA proliferation, enhance wound healing and reduce bacterial load. Nano-encapsulated CUR has also shown bioactive properties when acting on antioxidant systems (endogenous and cholinergic). Future research is necessary and must focus on investigation of encapsulated CUR nano-particles in different models of human pathology.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacocinética , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Disponibilidade Biológica , Curcumina/farmacocinética , Curcumina/farmacologia , Preparações de Ação Retardada/química , Humanos , Polifenóis/administração & dosagem , Polifenóis/farmacocinética , Polifenóis/farmacologia
9.
Pharmaceutics ; 13(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498151

RESUMO

Currently, the human immunodeficiency virus (HIV) that causes acquired immunodeficiency syndrome (AIDS) can only be treated successfully, using combination antiretroviral (ARV) therapy. Lamivudine (3TC) and zidovudine (AZT), two compounds used for the treatment of HIV and prevention of disease progression to AIDS are used in such combinations. Successful therapy with 3TC and AZT requires frequent dosing that may lead to reduced adherence, resistance and consequently treatment failure. Improved toxicity profiles of 3TC and AZT were observed when combined as a nano co-crystal (NCC). The use of stimuli-responsive delivery systems provides an opportunity to overcome the challenge of frequent dosing, by controlling and/or sustaining delivery of drugs. Preliminary studies undertaken to identify a suitable composition for a stimulus-responsive in situ forming hydrogel carrier for 3TC-AZT NCC were conducted, and the gelation and erosion time were determined. A 25% w/w Pluronic® F-127 thermoresponsive hydrogel was identified as a suitable carrier as it exhibited a gelation time of 5 min and an erosion time of 7 days. NCC-loaded hydrogels were evaluated using in vitro dissolution and cytotoxicity assays. In vitro dissolution undertaken using membrane-less diffusion over 168 h revealed that 3TC and AZT release from NCC-loaded hydrogels was complete and followed zero-order kinetic processes, whereas those loaded with the micro co-crystal and physical mixture were incomplete and best described using the Korsmeyer-Peppas kinetic model. The release of AZT and 3TC from the physical mixture and MCC-loaded gel exhibited a value for n of 0.595 for AZT release from the physical mixture and 0.540 for the MCC technology, whereas the release exponent for 3TC was 0.513 for the physical mixture and 0.557 for the MCC technology indicating that diffusion and erosion controlled 3TC and AZT release. In vitro cytotoxicity assay data revealed that the addition of NCC to the thermoresponsive hydrogel resulted in an improved cell viability of 88.0% ± 5.0% when compared to the cell viability of the NCC of 76.9% ± 5.0%. The results suggest that the use of a thermoresponsive nanosuspension may have the potential to be delivered as an intramuscular injection that can subsequently increase bioavailability and permit dose reduction and/or permit use of a longer dosing frequency.

10.
Intern Med J ; 51(2): 229-234, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31841257

RESUMO

Cancer therapy related cardiac dysfunction (CTRCD) is an area of increasing focus, particularly during the survivorship period, for paediatric, adolescent and adult cancer survivors. With the advent of immunotherapy and targeted therapy, there is a new set of mechanisms from which paediatric and young adult patients with cancer may suffer cardiovascular injury. Furthermore, cardiovascular disease is the leading cause of morbidity and mortality in the survivorship period. The recently established Australian Cardio-Oncology Registry is the largest and only population-based cardiotoxicity database of paediatric and adolescent and young adult oncology patients in the world, and the first paediatric registry that will document cardiotoxicity caused by chemotherapy and novel targeted therapies using a prospective approach. The database is designed for comprehensive data collection and evaluation of the Australian practice in terms of diagnosis and management of CTRCD. Using the Australian Cardio-Oncology Registry critical clinical information will be collected regarding predisposing factors for the development of CTRCD, the rate of subclinical left ventricular dysfunction and transition to overt heart failure, further research into protectant molecules against cardiac dysfunction and aid in the discovery of which genetic variants predispose to CTRCD. A health economic arm of the study will assess the cost/benefit of both the registry and cardio-oncology clinical implementation. Finally, an imaging arm will establish if exercise cardiac magnetic resonance imaging and VO2 max testing is a more sensitive predictor of cardiac reserve in paediatric and adolescent and young adult oncology patients exposed to cardiac toxic therapies.


Assuntos
Antineoplásicos , Neoplasias , Adolescente , Antineoplásicos/uso terapêutico , Austrália/epidemiologia , Cardiotoxicidade/epidemiologia , Criança , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/epidemiologia , Nova Zelândia/epidemiologia , Sistema de Registros
11.
Molecules ; 25(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339110

RESUMO

The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.


Assuntos
Antivirais/administração & dosagem , Antivirais/farmacologia , Biomimética , Tratamento Farmacológico da COVID-19 , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Nanoestruturas/química , SARS-CoV-2/patogenicidade
12.
Bioorg Med Chem ; 28(22): 115724, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128909

RESUMO

We have previously reported the discovery of a series of rhodanine-based inhibitors of the PIM family of serine/threonine kinases. Here we described the optimisation of those compounds to improve their physicochemical and ADME properties as well as reducing their off-targets activities against other kinases. Through molecular modeling and systematic structure activity relationship (SAR) studies, advanced molecules with high inhibitory potency, reduced off-target activity and minimal efflux were identified as new pan-PIM inhibitors. One example of an early lead, OX01401, was found to inhibit PIMs with nanomolar potency (15 nM for PIM1), inhibit proliferation of two PIM-expressing leukaemic cancer cell lines, MV4-11 and K562, and to reduce intracellular phosphorylation of a PIM substrate in a concentration dependent manner.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
13.
Pharmaceutics ; 12(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842501

RESUMO

The formation, manufacture and characterization of low energy water-in-oil (w/o) nanoemulsions prepared using cold pressed flaxseed oil containing efavirenz was investigated. Pseudo-ternary phase diagrams were constructed to identify the nanoemulsion region(s). Other potential lipid-based drug delivery phases containing flaxseed oil with 1:1 m/m surfactant mixture of Tween® 80, Span® 20 and different amounts of ethanol were tested to characterize the impact of surfactant mixture on emulsion formation. Flaxseed oil was used as the oil phase as efavirenz exhibited high solubility in the vehicle when compared to other vegetable oils tested. Optimization of surfactant mixtures was undertaken using design of experiments, specifically a D-optimal design with the flaxseed oil content set at 10% m/m. Two solutions from the desired optimization function were produced based on desirability and five nanoemulsion formulations were produced and characterized in terms of in vitro release of efavirenz, physical and chemical stability. Metastable nanoemulsions containing 10% m/m flaxseed oil were successfully manufactured and significant isotropic gel (semisolid) and o/w emulsions were observed during phase behavior studies. Droplet sizes ranged between 156 and 225 nm, zeta potential between -24 and -41 mV and all formulations were found to be monodisperse with polydispersity indices ≤ 0.487.

14.
Nanomaterials (Basel) ; 10(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842562

RESUMO

Nanoencapsulation is an approach to circumvent shortcomings such as reduced bioavailability, undesirable side effects, frequent dosing and unpleasant organoleptic properties of conventional drug delivery systems. The process of nanoencapsulation involves the use of biomaterials such as surfactants and/or polymers, often in combination with charge inducers and/or ligands for targeting. The biomaterials selected for nanoencapsulation processes must be as biocompatible as possible. The type(s) of biomaterials used for different nanoencapsulation approaches are highlighted and their use and applicability with regard to haemo- and, histocompatibility, cytotoxicity, genotoxicity and carcinogenesis are discussed.

15.
Drug Dev Ind Pharm ; 46(9): 1402-1415, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32795107

RESUMO

The aim of this research was to develop lamotrigine containing thermosetting hydrogel for intranasal administration to manage and treat generalized epilepsy. Thermosetting hydrogels were prepared using different ratios of poloxamer 407 (L127), poloxamer 188 (L68) and Carbopol® 974 P NF (C974) using the cold production process. The in situ thermosetting hydrogel was optimized using Box Behken design. Co-solvency approach was used to increase the solubility of lamotrigine by dissolving it in propylene glycol and polyethylene glycol 400 (0.2: 0.8) and the resultant solution was incorporated in the hydrogel to manufacture an LTG hydrogel. The presence of a higher amount of L127 resulted in higher viscosity at 22 °C and 34 °C and decreased the overall release of LTG. An increase in the amount of C974 resulted in a decrease in the pH of the hydrogel. The results show that formulations F10, F12, F13, F14, F15, F16 and F17 exhibited acceptable thermosetting behavior, pH and released adequate Lamotrigine above the minimum effective concentration to treat generalized epilepsy. The optimized formulation exhibited acceptable thermosetting behavior, pH and lamotrigine release but formed a stiff gel at 22 °C. The average LTG content of the optimized hydrogel was 5.00 ± 0.0225 mg/ml with % recovery of 99.17%. The amount of LTG released at 12 h from the optimized hydrogel was 3.21 ± 0.0155 mg and will be therapeutically effective in the brain after absorption via the olfactory region in the nasal cavity.


Assuntos
Anticonvulsivantes , Hidrogéis , Lamotrigina/química , Redes Neurais de Computação , Poloxâmero
16.
Pharmaceutics ; 12(8)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751409

RESUMO

Cardiovascular diseases such as hypertension and cardiac failure in South African children and adolescents are effectively managed long term, using a combination treatment of captopril and hydrochlorothiazide. The majority of commercially available pharmaceutical products are designed for adult patients and require extemporaneous manipulation, prior to administration to paediatric patients. There is a need to develop an age appropriate microparticulate dosing technology that is easy to swallow, dose and alter doses whilst overcoming the pharmacokinetic challenges of short half-life and biphasic pharmacokinetic disposition exhibited by hydrochlorothiazide and captopril. An emulsion solvent evaporation approach using different combinations of polymers was used to manufacture captopril and hydrochlorothiazide microparticles. Design of experiments was used to develop and analyse experimental data, and identifyoptimum formulation and process conditions for the preparation of the microparticles. Characterisation studies to establish encapsulation efficiency, in vitro release, shape, size and morphology of the microparticles were undertaken. The microparticles produced were in the micrometre size range, with an encapsulation efficiency >75% for both hydrochlorothiazide and captopril. The microparticulate technology is able to offer potential resolution to the half-life mediated dosing frequency of captopril as sustained release of the molecule was observed over a 12-h period. The release of hydrochlorothiazide of >80% suggests an improvement in solubility limited dissolution.

17.
Pharmaceutics ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316398

RESUMO

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used to manage HIV/AIDS infection. The compounds require frequent dosing, exhibit unpredictable bioavailability and a side effect profile that includes hepato- and haema-toxicity. A novel pseudo one-solvent bottom-up approach and Design of Experiments using sodium dodecyl sulphate (SDS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000) to electrosterically stablize the nano co-crystals was used to develop, produce and optimize 3TC and AZT nano co-crystals. Equimolar solutions of 3TC in surfactant dissolved in de-ionised water and AZT in methanol were rapidly injected into a vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer and the particle size, polydispersity index and Zeta potential determined. Optimization of the nanosuspensions was conducted using a Central Composite Design to produce nano co-crystals with specific identified and desirable Critical Quality Attributes including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < -30mV. Further characterization was undertaken using Fourier Transform infrared spectroscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry, powder X-ray diffraction and transmission electron microscopy. In vitro cytotoxicity studies revealed that the optimized nano co-crystals reduced the toxicity of AZT and 3TC to HeLa cells.

18.
Pharmaceutics ; 12(3)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151053

RESUMO

The degradation of rifampicin (RIF) in an acidic medium to form 3-formyl rifamycin SV, a poorly absorbed compound, is accelerated in the presence of isoniazid, contributing to the poor bioavailability of rifampicin. This manuscript presents a novel approach in which isoniazid is formulated into gastric-resistant sustained-release microspheres and RIF into microporous floating sustained-release microspheres to reduce the potential for interaction between RIF and isoniazid (INH) in an acidic environment. Hydroxypropyl methylcellulose acetate succinate and Eudragit® L100 polymers were used for the manufacture of isoniazid-loaded gastric-resistant sustained-release microspheres using an o/o solvent emulsification evaporation approach. Microporous floating sustained-release microspheres for the delivery of rifampicin in the stomach were manufactured using emulsification and a diffusion/evaporation process. The design of experiments was used to evaluate the impact of input variables on predefined responses or quality attributes of the microspheres. The percent degradation of rifampicin following 12 h dissolution testing in 0.1 M HCl pH 1.2 in the presence of isoniazid gastric-resistant sustained-release microspheres was only 4.44%. These results indicate that the degradation of rifampicin in the presence of isoniazid in acidic media can be reduced by encapsulation of both active pharmaceutical ingredients to ensure release in different segments of the gastrointestinal tract, potentially improving the bioavailability of rifampicin.

19.
Saudi Pharm J ; 28(3): 308-315, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194332

RESUMO

The aim of these studies was to determine the miscibility of different API with lipid excipients to predict drug loading and encapsulation properties for the production of solid lipid nanoparticles and nanostructured lipid carriers. Five API exhibiting different physicochemical characteristics, viz., clarithromycin, efavirenz, minocycline hydrochloride, mometasone furoate, and didanosine were used and six solid lipids in addition to four liquid lipids were investigated. Determination of solid and liquid lipids with the best solubilization potential for each API were performed using a traditional shake-flask method and/or a modification thereof. Hansen solubility parameters of the API and different solid and liquid lipids were estimated from their chemical structure using Hiroshi Yamamoto's molecular breaking method of Hansen Solubility Parameters in Practice software. Experimental results were in close agreement with solubility parameter predictions for systems with ΔδT < 4.0 MPa1/2. A combination of Hansen solubility parameters with experimental drug-lipid miscibility tests can be successfully applied to predict lipids with the best solubilizing potential for different API prior to manufacture of solid lipid nanoparticles and nanostructured lipid carriers.

20.
Pharmaceutics ; 12(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102162

RESUMO

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used orally to manage HIV/AIDS infection. A pseudo one-solvent bottom-up approach was used to develop and produce nano co-crystals of 3TC and AZT. Equimolar amounts of 3TC dissolved in de-ionized water and AZT in methanol were rapidly injected into a pre-cooled vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer. The particle size, polydispersity index and Zeta potential were elucidated. Further characterization was undertaken using powder X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and energy dispersive X-ray spectroscopy scanning electron microscopy. Different surfactants were assessed for their ability to stabilize the nano co-crystals and for their ability to produce nano co-crystals with specific and desirable critical quality attributes (CQA) including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < -30 mV. All surfactants produced co-crystals in the nanometer range. The PDI and PS are concentration-dependent for all nano co-crystals manufactured while only ZP was within specification when sodium dodecyl sulfate was used in the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...